Превращение энергии в клетке кратко. Обмен веществ и превращение энергии. Особенности энергетического обмена. История открытия ферментов

Основное содержание темы составляет понятие об обмене веществ как совокупности химических реакций, обеспечивающих рост жизнедеятельность, воспроизведение и постоянный контакт, и обмен с окружающей средой. Все химические реакций живой клетки можно разделить на два типа: реакции синтеза (биосинтеза), с помощью которых осуществляется пластический обмен, и реакции расщепления - энергетический обмен.

Энергетический обмен состоит из трех этапов. Первый из них: ПОДГОТОВИТЕЛЬНЫЙ этап. На этом этапе крупные молекулы белков, нуклеиновых кислот, жиров, углеводов расщепляются на более мелкие: глюкозу, глицерин, жирные кислоты, нуклеотиды. При этом выделяется небольшое количество энергии, которая рассеивается в виде тепла.

Второй этап - бескислородный или АНАЭРОБНЫЙ . Этот этап можно рассмотреть на примере расщепления глюкозы. Обратите внимание на то, что при этом не используется кислород и образуется всего две молекулы АТФ . Необходимо учитывать, что в виде АТФ запасается всего 40% энергии, остальное рассеивается в виде тепла.

Третий этап - кислородный или АЭРОБНЫЙ . Особенность данного этапа состоит в том, что в реакциях гликолиза участвует кислород и образуется 36 молекул АТФ .

Имейте в виду, что в случаях большой надобности в энергии в клетках эукариот может идти процесс энергетического обмена только до второго этапа, то есть только анаэробный гликолиз.При изучении пластического обмена обратите внимание на то, в каких органоидах клетки происходит синтез тех или иных органических веществ (углеводов, жиров, белков, нуклеиновых кислот).

ФОТОСИНТЕЗ -это процесс образования органических веществ из неорганических с помощью световой энергии. Исходными для фотосинтеза являются углекислый газ и вода, содержащие значительно меньше энергии, чем глюкоза. Следовательно, в процессе фотосинтеза солнечная энергия преобразуется в химическую. (Энергия переходит из одной формы в другую).Обратите внимание: процесс фотосинтеза имеет несколько ключевых моментов. Молекула хлорофилла содержит атом Mg. Электроны на внешних орбиталях металла неустойчивы. При ударе фотоном электрон вылетает из атома. Но в таком состоянии он долго существовать не может. Он должен вернуться на свое место, излучив предварительно энергию, полученную от фотона, или отдать ее. У растений в хлоропластах эта энергия не теряется. Она частично идет на синтез АТФ , но, самое важное, этот электрон идет на фотолиз воды. Образовавшиеся ионы водорода идут на синтез органических веществ, а кислород выделяется в атмосферу. Это реакции световой фазы. Следующая фаза условно получила название темновой. Это ряд ферментативных реакций, в процессе которых связывется углекислый газ и синтезируются углеводы. При этом расходуется энергия АТФ и атомы водорода.К реакциям биосинтеза относятся реакции синтеза белка. Перед изучением этой части темы повторите строение белков, строение и функции нуклеиновых кислот (ДНК и РНК ), принцип комплементарности (А-Т ,Ц-Г ).Биосинтез белка происходит при участии рибосом. Начинается этот сложный процесс с синтеза на молекуле ДНК молекулы и-РНК , который происходит в ядре. Далее и-РНК переносится из ядра к месту синтеза белка. Следует учесть - молекулы и-РНК строго индивидуальны и переносят информацию только об одном белке. Процесс синтеза и-РНК называется ТРАНСКРИПЦИЕЙ . В цитоплазме на и-РНК нанизывается одна или несколько рибосом. Процесс считывания информации и синтеза белка получил название ТРАНСЛЯЦИИ . Особую роль в трансляции играют т-РНК (транспортные РНК ), она обеспечивают соответствие информации и-РНК составу белка. При этом каждым трем нуклеотидам и-РНК соответствует одна аминокислота, соответствие достигается особенностью строения т-РНК . На одном конце прикрепляется аминокислота, а на другом находится триплет нуклеотидов, который соответствует данной аминокислоте. При биосинтезе белка строго соблюдается принцип комплементарности. На рибосоме фиксируется соответствие триплета и-РНК триплету т-РНК и фиксация аминокислоты, с последующим присоединением ее к синтезируемой цепочке белка По мере синтеза белковой нити она сворачивется сразу во вторичную и третичную структуру. Рибосома движется по и-РНК от триплета к триплету. Все реакции биосинтеза происходят при участии ферментов и с затратой энергии.


Схему биосинтеза белка можно кратко представить в следующем виде: ГЕН (участок ДНК ) - И-РНК - РИБОСОМЫ с участием Т-РНК - БЕЛОК .

В ЦЕЛОМ ПРОЦЕССЫ ОБМЕНА ВЕЩЕСТВ КЛЕТКИ (в отличие от обычных химических реакций) ХАРАКТЕРИЗУЮТСЯ СВОЕЙ НАПРАВЛЕННОСТЬЮ, ЧЕТКОЙ ЛОКАЛИЗАЦИЕЙ В КЛЕТКЕ, РАЗГРАНИЧЕННОСТЬЮ В ПРОСТРАНСТВЕ КЛЕТКИ ОДНОВРЕМЕННО ПРОТЕКАЮЩИХ ПРОЦЕССОВ СИНТЕЗА И РАСЩЕПЛЕНИЯ, ОГРОМНОЙ СКОРОСТЬЮ, МАТРИЧНЫМ СИНТЕЗОМ БИОПОЛИМЕРОВ.

Вопрос №2

Человек относится к классу млекопитающих, отряду приматов. Ближайшими эволюционными родственниками человека являются шимпанзе, гориллы и орангутанги. Это обусловливает очень большое сходство скелета человека со скелетами других млекопитающих, и особенно приматов.

Скелет человека, так же как скелеты других млекопитающих, состоит из позвоночника, черепа, грудной клетки, поясов конечностей и скелета собственно конечностей. Однако у человека лучше, чем у других млекопитающих, развит мозг, человек отличается способностью к труду и прямохождением. Эти особенности наложили отпечаток на строение скелета человека.

Сравнительный ряд скелетов, свидетельствующий о различии и сходстве в их строении:
1 – горилла; 2 – неандерталец; 3 – современный человек

Так, объем черепной полости человека больше, чем у любого животного с такими же размерами тела. Размеры лицевой части черепа у человека меньше, чем мозговой, а у животных – наоборот. Это связано с тем, что животные питаются сырой пищей, которую трудно измельчать, и поэтому они имеют большие челюсти и зубы, которые являются еще и органами защиты. Объем же мозга у животных относительно размеров тела гораздо меньше, чем у человека. Позвоночник у животных не имеет значительных изгибов, а у человека имеет 4 изгиба: шейный, грудной, поясничный и крестцовый. Эти изгибы появились в связи с прямохождением и обеспечивают позвоночнику упругость при ходьбе, беге, прыжках.

Грудная клетка у животных сжата спереди назад. У животных масса тела распределена между всеми четырьмя конечностями и таз не очень массивен. У человека вся масса тела опирается на нижние конечности, таз – широкий и прочный.

Скелет передних и задних конечностей у животных не очень сильно различается между собой. У человека кости нижних конечностей толще и прочнее, чем верхних. Имеются также сильные различия в строении стопы и кисти человека. Строение пальцев рук дает возможность человеку выполнять сложные виды работ.

Человек так же, как и другие млекопитающие, имеет зубы трех видов: клыки, резцы и коренные, однако число и форма этих зубов у человека и представителей других отрядов млекопитающих очень сильно различаются.

Сходство скелета человека и человекообразных обезьян является одним из доказательств того, что у человека имеются общие с этими обезьянами предки

Вопрос №3

Роль голосеменных в природе. Голосеменные образуют хвойные и смешанные леса, занимающие огромные площади. Они обогащают воздух кислородом, поэтому их часто называют «легкими планеты». Леса регулируют таяние снега, уровень воды в реках, поглощают шумы, ослабляют силу ветров, закрепляют пески. Лес – место обитания многих видов животных, которые питаются побегами, семенами, шишками хвойных растений.

Хвойные растения непрерывно выделяют в воздух большое количество фитонцидов (от греч. фитон и лат. цедо – убиваю) – веществ, угнетающих деятельность других организмов. Особенно интенсивно это происходит в еловых лесах. Так, по данным ученых, в 1 м3 воздуха хвойного леса содержится не более 500 клеток болезнетворных бактерий, тогда как городского – до 30–40 тыс. Поэтому в хвойных лесах размещают санатории и больницы для людей с заболеваниями дыхательной системы.

Голосеменные играют огромную роль хотя бы потому, что большая часть суши, покрытой растительностью, покрыта именно голосеменными - тайга. Это основной поставщик кислорода в биосфере, корм и убежище для животных, строительные материалы, топливо, бумага, сырье

Билет №7 Вопрос №1

Обмен веществ и энергии в клетке (Билет №6 Вопрос №1)

Характеристика процесса дыхания:

Клеточное или тканевое дыхание - совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды.

Итак, клеточное дыхание происходит в клетке. Но где именно? Какая органелла осуществляет этот процесс?

Все этапы клеточного дыхания происходят в митохондриях. Как известно, основной продукт работы митохондрии - молекулы АТФ - синоним понятия «энергия» в биологии. Действительно, основным продуктом этого процесса является энергия, молекулы АТФ.

Все живые организмы осуществляют обмен веществ с внешней средой. В клетках постоянно осуществляются процессы биосинтеза. Благодаря ферментам, из простых веществ образуются сложные соединения: из аминокислот синтезируются белки, из моносахаридов – сложные углеводы, из азотистых оснований – нуклеиновые кислоты. Различные жиры и масла образуются посредством химических превращений относительно простых веществ. Хитин- это наружный покров членистоногих, образующее хитина -сложный полисахарид (стр.7), у птиц, млекопитающих, наружным покровом является роговое вещество, основой которого является белок кератин. В конечном счете, состав синтезируемых крупных органических молекул обусловливается генотипом. Синтезированные вещества применяются в ходе роста с целью возведения клеток и их органоидов и ради замены израсходованных либо разрушенных молекул. Все без исключения взаимодействия биосинтеза проходят с поглощением энергии.

Пластический обмен

Пластический обмен, иначе называют биосинтез или анаболизм, происходит этот обмен только в клетке. Пластический обмен имеет три типа: фотосинтез, хемосинтез и биосинтез белков. Фотосинтез используется растениями и лишь некоторыми бактериями (цианобактериями). Такие организмы именуются автотрофами. Хемосинтез применяется определенными бактериями, в их число входят и анаэробные. Такие организмы именуются хемотрофами. Животные и грибы относят к гетеротрофным созданиям.

Фотосинтез

Процесс фотосинтеза происходит благодаря реакции, которая предполагает образование глюкозы и кислорода из углекислого газа и воды. У фотосинтеза две фазы, световая и темновая. Во время световой фазы, процесс фотосинтеза происходит в гранах хлоропласта, а в темновой, в стромах хлоропласта (см. Приложение 7) . Без солнечной энергии, фотосинтез бы не имел своего значения, поэтому это является важным фактором. Во время этого процесса из шести молекул углекислого газа и воды образуется шесть молекул кислорода и одна молекула глюкозы. Процесс фотосинтеза происходит в хлоропластах, в органеллах находится хлорофилл, благодаря ему и происходит синтез.

6СО2 + 6Н2О → С6Н12О6 + 6О2

Хемосинтез

Хемосинтез свойственен таким бактериям, как серным, нитрифицирующим и железобактериям. Бактерии используют энергию, приобретённую благодаря процессу окисления веществ, для восстановления углекислого газа до органических соединений.(см. Приложение 8) Серобактерии окисляют такое вещество, как сероводород, нитрифицирующие окисляют аммиак, а железобактерии окисляют закись железа.

Биосинтез белков

Пластический обмен - это синтез белков клеткой. Обмен имеет два главных процесса: транскрипцию и трансляцию.

Транскрипция- это процесс синтеза информационной РНК с помощью ДНК по принципу комплементарности. (см. Приложение 9)

Транскрипция представляет три этапа:

Образование первичного транскрипта

Процессинг

Сплайсинг

Трансляция- перенос информации о структуре белка с информационной РНК на синтезирующийся полипептид. (см. Приложение 10) Этот процесс осуществляется в цитоплазме на рибосоме. Трансляция происходит в четыре этапа. На первой стадии аминокислоты активируются специальным ферментом - аминоацилом Т-РНК-синтетазой. Для этого процесса используется энергия в виде АТФ. Затем образуется миноациладенилат. После этого следует процесс примыкания активированной аминокислоты к транспортной РНК, при этом выделяется АМФ. Далее во время третьего этапа, образованный комплекс связывается с рибосомой. Затем включаются аминокислоты в структуру белка в определенной последовательности, после чего транспортная РНК высвобождается.


Энергетический обмен

Энергетический обмен, так же называют катаболизмом. Пластический и энергетический обмен очень связанны, ведь для осуществления пластического обмена (анаболизма), необходима энергия, которая получается клеткой за счет катаболизма. С помощью этого процесса клетка синтезирует нужные нуклеиновые кислоты, белки, углеводы и т.п. Энергетический обмен- это процесс, в течении которого вещества, обладающие сложную структуру, расщепляются в наиболее простые или окисляются, из-за чего же организм приобретает энергию, требуемую для существования. Всего существуют три этапа энергетического обмена:

Подготовительный этап

Анаэробный этап- гликолиз (без участия кислорода)

Аэробный этап- клеточное дыхание (с участием кислорода)

Подготовительный этап

Во время этого этапа полимеры преобразуются в мономеры, то есть такие соединения, как белки, углеводы и липоиды, расщепляются на более простые. Этот процесс происходит вне клетки, в органах пищеварительной системы. Кислород на этом этапе энергетического обмена не требуется. В итоге реакций, белок распадается на аминокислоты, сложные углеводы - в простые моносахариды и липиды - на глицерин и высшие кислоты. Так же этот этап протекает и в лизосомах клетки.

Анаэробный этап

Этот этап иначе называют брожением или гликолизом. Образовавшиеся в подготовительном этапе вещества - глюкоза, аминокислоты и др. - подвергаются последующему ферментативному распаду без участия кислорода. В основном углеводы подвергаются брожению. В ходе химических реакций, применяемых на данной стадии катаболизма, образуются спирты, углекислый газ, ацетон, органические кислоты, в отдельных случаях водород и прочие вещества. Гликолиз - процесс расщепления глюкозы в анаэробных условиях до пировиноградной кислоты (ПВК), далее до молочной, уксусной, масляной кислот или этилового спирта, протекающий в цитоплазме клетки. В ходе бескислородного расщепления часть выделяемой энергии рассеивается в виде тепла, а часть запасается в молекулах АТФ. В клетках животных и грибов распространена реакция, в результате которой выделяется пировиноградная кислота.

Основная химическая реакция, на данном этапе выглядит так:

С6Н12О6 = 2С3Н4О3 + (4Н) + 2АТФ

В результате этого процесса образуется две молекулы АТФ.

Аэробный этап

Этот этап осуществляется в митохондриях.(см. Приложение 11) В данной стадии осуществляется окисление веществ, за счет чего освобождается определенный объем энергии. В этом же процессе кислород принимает участие. Кислород перемещается с помощью эритроцитов, содержащих гемоглобин. Полученные в предыдущих этапах вещества расщепляются клеткой до самых простых, то есть до углекислого газа и воды. Ферменты, содержащиеся в лизосомах, окисляют органические соединения в клетке. АДФ - аденозиндифосфат- вещество, которое также необходимо для получения энергии, вследствие клеточного дыхания. Основная химическая реакция, на данном этапе выглядит так:

2С3Н6О3 + 6О2 + 36Н3РО4 + 36АДФ = 6СО2 + 42Н2О + 36АТФ

В результате этого процесса образуются 36 молекул АТФ.

Можно заметить из данного уравнения, что энергии на этом этапе выделается немалое количество. Кроме того на данной стадии может осуществляться реакция полного окисления пировиноградной кислоты, вследствие которого также выделяется энергия, однако в меньшем количестве.

Следовательно, при полном расщеплении одной молекулы глюкозы клетка может синтезировать 38 молекул АТФ (2 молекулы в процессе гликолиза и 36 молекул в ходе аэробного этапа). (см. Приложение 12)

Общее уравнение аэробного дыхания можно записать следующим способом:

С6Н1206 + 602 + 38АДФ + 38Н3Р04 > 6С02 + 6Н20 + 38АТФ.


Заключение

Клетка- это высокоорганизованная единица жизни. Через клетки совершается поглощение, преобразование, запасание и применение веществ и энергии. Именно в клетке совершаются такие процессы, как дыхание, ферментация, фотосинтез, дупликация генетического материала. И такие процессы происходят, как в простых по структуре организмах (одноклеточные), так и в сложных по структуре организмах (многоклеточные). Жизнь всех организмов зависит от их клеток.


Приложение

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Приложение 5

Приложение 6

Приложение 7

Приложение 8

Приложение 9

Вопрос 1. Что такое диссимиляция? Перечислите ее этапы.
Диссимиляция , или энергетический обмен , - это совокупность реакций расщепления высокомолекулярных соединений, которые сопровождаются выделением и запасанием энергии. Диссимиляция у аэробных (кислорододышащих) организмов происходит в три этапа:
подготовительный - расщепление высокомолекулярных соединений до низкомолекулярных без запасания энергии;
бескислородный - частичное бескислородное расщепление соединений, энергия запасается в виде АТФ; кислородный - окончательное расщепление органических веществ до углекислого газа и воды, энергия также запасается в виде АТФ.
Диссимиляция у анаэробных (не использующих кислород) организмов происходит в два этапа: подготовительный и бескислородный. В данном случае органические вещества расщепляются не полностью и энергии запасается гораздо меньше.

Вопрос 2. В чем заключается роль АТФ в обмене веществ в клетке?
Аденозинтрифосфорная кислота (АТФ) состоит из азотистого основания - аденина, сахара - рибозы и трех остатков фосфорной кислоты. Молекула АТФ очень неустойчива и способна отщеплять одну или две молекулы фосфата с выделением большого количества энергии, расходуемой на обеспечение всех жизненных функций клетки (биосинтез, трансмембранный перенос, движение, образование электрического импульса и др.). Связи в молекуле АТФ называют макроэргическими.
Отщепление концевого фосфата от молекулы АТФ сопровождается выделением 40 кДж энергии.). При этом АТФ превращается в АДФ. Если произойдет отщепление второго остатка фофорной кислоты, АДФ превратится в АМФ. Все процессы в живых организмах, требующие затрат энергии, сопровождаются превращением молекул АТФ в АДФ (или даже в АМФ).
Синтез АТФ происходит в митохондриях.

Вопрос 3. Какие структуры клетки осуществляют синтез АТФ?
В эукариотических клетках синтез основной массы АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением (запасанием) энергии. В пластидах АТФ образуется как промежуточный продукт световой стадии фотосинтеза.

Вопрос 4. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.
Энергетический обмен обычно подразделяют на три этапа. Первый этап - Подготовительный, называемый также пищеварением. Осуществляется он главным образом вне клеток под действием ферментов, секретируемых в полость пищеварительного тракта. На этом этапе крупные молекулы полимеров распадаются на мономеры: белки - на аминокислоты, полисахариды - на простые сахара, жиры - на жирные кислоты и глицерин. При этом выделяется небольшое количество энергии, которая рассеивается и виде теплоты.
Бескислородный. В результате гликолиза одна молекула глюкозы расщепляется до двух молекул пировиноградной кислоты:
С 6 Н 12 О 6 <-----> 2С 3 Н 4 0 3 .
Распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. При этом 60% выделившейся энергии превращается в тепло, а 40% запасается в виде АТФ. При распаде одной молекулы глюкозы образуется 2 молекулы АТФ. Затем у анаэробных организмов происходит брожение - спиртовое (С 2 НС 5 ОН - этиловый спирт) или молочнокислое (С 3 Н 4 0 3 - молочная кислота). У аэробных организмов наступает третий этап энергетического обмена.
Кислородный. Этот этап катаболизма нуждается в присутствии молекулярного кислорода и называется дыханием. Развитие клеточного дыхания у аэробных микроорганизмов и в клетках эукариот стало возможным лишь после того, как в результате фотосинтеза в атмосфере Земли появился молекулярный кислород. Добавление к каталическому процессу стадии, осуществляющейся в присутствии кислорода, обеспечивает клетки мощным и эффективным путем извлечения из молекул питательных веществ и энергии.
Реакции кислородного расщепления, или окислительного катаболизма, протекают в специальных органоидах клетки - митохондриях, куда поступают молекулы пировиноградной кислоты. После целого ряда прекращений образуются конечные продукты - СО 2 и Н 2 О, которые затем диффундируют из клетки. Суммарное уравнение аэробного дыхания выглядит так:
С 6 Н 12 О 6 + 6О 2 + 36Н 3 РО 4 + 36АДФ <-----> 6СО 2 + 6Н 2 О + 36АТФ.
Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Всего в ходе второго и третьего этапов энергетического обмена при расщеплении одной молекулы глюкозы образуются 38 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Все живые организмы на Земле представляют собой открытые системы, способные активно организовывать поступление энергии и вещества извне. Энергия необходима для осуществления жизненно важных процессов, но прежде всего для химического синтеза веществ, используемых для построения и восстановления структур клетки и организма. Живые существа способны использовать только два вида энергии: световую (энергию солнечного излучения) и химическую (энергию связей химических соединении) – по этому признаку организмы делятся на две группы – фототрофы и хемотрофы.

Главным источником структурных молекул является углерод. В зависимости от источников углерода живые организмы делят на две группы: автотрофы, использующие не органический источник углерода (диоксид углерода), и гетеротрофы, использующие органические источники углерода.

Процесс потребления энергии и вещества называется питанием. Известны два способа питания: голозойный – посредством захвата частиц пищи внутрь тела и голофитный – без захвата, посредством всасывания растворенных пищевых веществ через поверхностные структуры организма. Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма.

Метаболизм представляет собой совокупность взаимосвязанных и сбалансированных процессов, включающих разнообразные химические превращения в организме. Реакции синтеза, осуществляющиеся с потреблением энергии, составляют основу анаболизма (пластического обмена или ассимиляции).

Реакции расщепления, сопровождающиеся высвобождением энергии, составляют основукатаболизма (энергического обмена или диссимиляции).

1. Значение АТФ в обмене веществ

Энергия, высвобождающая при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты.

Энергия, высвобождающаяся при гидролизе АТФ, используется клеткой для совершения всех видов работы. Значительные количества энергии расходуются на биологические синтезы. АТФ является универсальным источником энергообеспечения клетки. Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования, происходящему с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 минуты).

2. Энергетический обмен в клетке. Синтез АТФ

Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Энергия для фосфорилирования АДФ образуется в ходе энергетического обмена. Энергетический обмен, или диссимиляция, представляет собой совокупность реакции расщепления органических веществ, сопровождающихся выделением энергии. В зависимости от среды обитания диссимиляция может протекать в два или три этапа.

У большинства живых организмов – аэробов, живущих в кислородной среде, - в ходе диссимиляции осуществляется три этапа: подготовительный, бескислородный, кислородный. У анаэробов, обитающих в среде лишенной кислорода, или у аэробов при его недостатке, диссимиляция протекает лишь в два первых этапа с образованием промежуточных органических соединений, еще богатых энергией.

Первый этап – подготовительный – заключается в ферментативном расщеплении сложных органических соединении на более простые (белков на аминокислоты; полисахаридов на моносахариды; нуклеиновых кислот на нуклеотиды). Внутриклеточное расщепление органических веществ происходит под действием гидролитических ферментов лизосом. Высвобождающаяся при этом энергия рассеивается в виде теплоты, а образующиеся малые органические молекулы могут подвергнутся дальнейшему расщеплению и использоваться клеткой как «строительный материал» для синтеза собственных органических соединений.

Второй этап – неполное окисление – осуществляется непосредственно в цитоплазме клетки, в присутствии кислорода не нуждается и заключается в дальнейшем расщеплении органических субстратов. Главным источником энергии в клетке является глюкоза . Бескислородное, неполное расщепление глюкозы, называют гликолизом.

Третий этап – полное окисление – протекает при обязательном участие кислорода. В его результате молекула глюкозы расщепляется до неорганического диоксида углерода, а высвободившаяся при этом энергия частично расходуется на синтез АТФ.

3. Пластический обмен

Пластический обмен, или ассимиляция, представляют собой совокупность реакций, обеспечивающих синтез сложных органических соединений в клетке. Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул.

Органические вещества пищи (белки, жиры, углеводы) --> пищеварение --> Простые органические молекулы (аминокислоты, жирные кислоты, моносахара) --> биологические синтезы --> Макромолекулы тела (белки, жиры, углеводы)

Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе автотрофной ассимиляции реакции фото- и хемосинтеза, обеспечивающие образование простых органических соединений, предшествует биологическим синтезам молекул макромолекул:

Неорганические вещества (углекислый газ, вода) --> фотосинтез, хемосинтез --> Простые органические молекулы (аминокислоты, жирные кислоты, моносахара)-----биологические синтезы --> Макромолекулы тела (белки, жиры, углеводы)

4. Фотосинтез

Фотосинтез – синтез органических соединении из неорганических, идущий за счет энергии клетки. Ведущую роль в процессах фотосинтеза играют фотосинтезирующие пигменты, обладающие уникальным свойством – улавливать свет и превращать его энергию в химическую энергию. Фотосинтезирующие пигменты представляют собой довольно многочисленную группу белково-подобных веществ. Главным и наиболее важным в энергетическом плане является пигментхлорофилл а , встречающиеся у всех фототрофов, кроме бактерии-фотосинтетиков. Фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид у эукариот или во впячивания цитоплазматической мембраны у прокариот.

В процессе фотосинтеза кроме моносахаридов (глюкоза и др.), которые превращаются в крахмал и запасаются растением, синтезируются мономеры других органических соединении – аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растительные, а точнее – хлорофиллосодержащие, клетки обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.

5. Хемосинтез

Хемосинтез также представляет собой процесс синтеза органических соединении из неорганических, но осуществляется он не за счет энергии света, а за счет химической энергии, получаемой при окислении неорганических веществ (серы, сероводорода, железа, аммиака, нитрита и др.). Наибольшее значение имеют нитрифицирующие, железо- и серобактерии.

Высвобождающаяся в ходе реакций окисления энергия запасается бактериями в виде АТФ и используется для синтеза органических соединений. Хемосинтезирующие бактерии играют очень важную роль в биосфере. Они участвуют в очистке сточных вод, способствуют накоплению в почве минеральных веществ, повышают плодородие почвы.

ДНК -биополимер, микро молекула, полинуклеотид, -маномер-нуклеотид Азотистые основания-дезоксирибоза-остаток фосфорной кислоты Азотистые основания:аденин,тимин,гуанин,цитозин -двуцепочечное строение РНК -биополимер,макромолекула, полинуклеотид, -маномер-нуклеотид Азотистые основания-Рибоза-Остаток фосфорной кислоты Азотистые основания:аденин,урацил,гуанин,цитозин. Молекула РНК- одноцепоченная. Функции: ДНК- хранение генетической информации РНК- передача генетической иформации

Иформационная РНК, несущая сведения о первичной структуре белковых молекул, синтезируется в ядре. Пройдя через поры ядерной оболочки, и-РНК направляется к рибосомам, где осуществляется расшифровка генетической информации - перевод ее с Уязыка нуклеотидов на Уязык аминокислот.

Аминокислоты, из которых синтезируются белки, доставляются к рибосомам с помощью специальных РНК, называемых транспортными (т-РНК). В т-РНК последовательность трех нуклеотидов комплементарна нуклеотидам кодона в и-РНК. Такая последовательность нуклеотидов в структуре т-РНК называется антикодоном. Каждая т-РНК присоединяет определенную, Усвою аминокислоту, при помощи ферментов и с затратой АТФ. В этом состоит первый этап синтеза.

Для того чтобы аминокислота включилась в цепь белка, она должна оторваться от т-РНК. На втором этапе синтеза белка т-РНК выполняет функцию переводчика с Уязыка нуклеотидов на Уязык аминокислот. Такой перевод происходит на рибосоме. В ней имеется два участка: на одном т-РНК получает команду от и-РНК - антикодон узнает кодон, на другом - выполняется приказ - аминокислота отрывается от т-РНК.

Третий этап синтеза белка заключается в том, что фермент синтетаза присоединяет оторвавшуюся от т-РНК аминокислоту к растущей белковой молекуле. Информационная РНК непрерывно скользит по рибосоме, каждый триплет сначала попадает в первый участок, где узнается антикодоном т-РНК, затем на второй участок. Сюда же переходит т-РНК с присоединенной к ней аминокислотой, здесь аминокислоты отрываются от т-РНК и соединяются друг с другом в той последовательности, в которой триплеты следуют один за другим.

Когда на рибосоме в первом участке оказывается один из трех триплетов, являющихся знаками препинания между генами, это означает, что синтез белка завершен. Готовая цепь белка отходит от рибосомы. Процесс синтеза белковой молекулы требует больших затрат энергии. На соединение каждой аминокислоты с т-РНК расходуется энергия одной молекулы АТФ.

Для увеличения производства белков и-РНК часто одновременно проходит не через одну, а через несколько рибосом последовательно. Такую структуру, объединенную одной молекулой и-РНК, называют полисомой. На каждой рибосоме в таком, похожем на нитку бус, конвейере последовательно синтезируются несколько молекул одинаковых белков.

Синтез белка на рибосомах носит название трансляции. Синтез белковых молекул происходит непрерывно и идет с большой скоростью: в одну минуту образуется от 50 до 60 тыс. пептидных связей. Синтез одной молекулы белка длится всего 3-4 секунды. Каждый этап биосинтеза катализируется соответствующими ферментами и снабжается энергией за счет расщепления АТФ. Синтезированные белки поступают в каналы эндоплазматической сети, по которым транспортируются к определенным участкам клетки.

Растительная клетка как осмотическая система

Растительная клетка представляет собой осмотическую систему. Клеточный сок вакуоли является высококонцентрированным раствором. Осмотическое давление клеточного сока обозначается - .

Чтобы попасть в вакуоль, вода должна пройти через клеточную стенку, плазмалемму, цитоплазму и тонопласт. Клеточная стенка хорошо проницаема для воды. Плазмалемма и тонопласт обладают избирательной проницаемостью. Поэтому растительную клетку можно рассматривать как осмотическую систему, в которой плазмалемма и тонопластявляются полупроницаемой мембраной, а вакуоль с клеточным соком – концентрированным раствором. Поэтому, если клетку поместить в воду, то вода по законам осмоса начнет поступать внутрь клетки.

Сила, с которой вода поступает внутрь клетки, называется сосущей силой – S.

Она тождественна водному потенциалу.

По мере поступления воды в вакуоль, ее объем увеличивается, вода разбавляет клеточный сок, и клеточные стенки начинают испытывать давление. Клеточная стенка обладает определенной эластичностью и может растягиваться.

С увеличением объема вакуоли цитоплазма прижимается к клеточной стенке и возникает тургорное давление на клеточную стенку (Р). Одновременно со стороны клеточной стенки возникает равное по величине противодавление клеточной стенки на протопласт. Противодавление клеточной стенки называется потенциалом давления (-Р).

Таким образом, величина сосущей силы S определяется осмотическим давлением клеточного сока и тургорным гидростатическим давлением клетки Р, которое равно противодавлению клеточной стенки, возникающей при ее растяжении –Р.

S = - Р или - - .

Если растение находится в условиях достаточной увлажненности почвы и воздуха, то клетки находятся в состоянии полного тургора. Когда клетка полностью насыщена водой (тургесцентна), то ее сосущая сила равна нулю S = 0, а тургорное давление равно потенциальному осмотическому давлению Р = .

При недостатке влаги в почве вначале возникает водный дефицит в клеточной стенке. Водный потенциал клеточной стенки становится ниже, чем в вакуолях, и вода начинает перемещаться из вакуоли в клеточную стенку. Отток воды из вакуоли снижает тургорное давление в клетках и увеличивает их сосущую силу. При длительном недостатке влаги большинство клеток теряет тургор, и растение начинает завядать, теряя эластичность и упругость. При этом тургорное давление Р = 0, а сосущая сила S =

Если из-за очень большой потери воды тургорное давление упадет до нуля, то лист завянет совсем. Дальнейшая потеря воды приведет к гибели протопласта клеток. Приспособительным признаком к резкой потере воды является быстрое закрытие устьиц при недостатке влаги.

Клетки могут быстро восстановить тургор, если растение получит достаточное количество воды или в ночное время, когда растение получает достаточное количество воды из почвы. А также при поливе.

Водный потенциал; равен 0 для чистой воды; равен 0 или отрицателен для клеток.

Осмотический потенциал, всегда отрицателен

Потенциал давления; обычно положителен для в живых клетках(в клетках, содержимое которых находится под давлением, но отрицателен в клетках ксилемы(в которых создается натяжение воды).

Суммарный результат действия

При полном тургоре

При начальном плазмолизе

Если поместить клетку в гипертонический раствор с более низким водным потенциалом, то вода начинает выходить из клетки путем осмоса через плазматическую мембрану. Сначала вода будет выходить из цитоплазмы, затем через тонопласт из вакуоли. Живое содержимое клетки – протопласт при этом сморщивается и отстает от клеточной стенки. Происходит процесс плазмолиза. Пространство между клеточной стенкой и протопластом заполняет наружный раствор. Такая клетка называетсяплазмолизированной. Вода будет выходить из клетки до тех пор, пока водный потенциал протопласта не станет равен водному потенциалу окружающего раствора, после чего клетка перестает сморщиваться. Этот процесс обратим и клетка не получает повреждений.

Если клетку поместить в чистую воду или гипотонический раствор, то тургорное состояние клетки восстановится и происходит процесс деплазмолиза.

В условиях водного дефицита в молодых тканях резкое усиление потери воды приводит к тому, что тургорное давление клетки становится отрицательным и протопласт, сокращаясь в объеме, не отделяется от клеточной стенки, а тянет ее за собой. Клетки и ткани сжимаются. Это явление называется циторриз.

Рост, развитие, умственная и физическая деятельность возможны благодаря обмену веществ и энергии в клетке. Преобразование веществ в энергию является главным условием живых организмов, начиная одноклеточными растениями и заканчивая человеком.

Анаболизм и катаболизм

Обмен веществ или метаболизм - совокупность сложных химических реакций, происходящих в каждой клетке живого организма. Основное свойство обмена веществ и энергии - обеспечение взаимодействия внешней среды с организмом для поддержания жизни и нормального функционирования тканей и органов. Все жизненно необходимые вещества (вода, кислород, органические соединения) поступают из внешней среды. Без их доступа обмен веществ нарушается или прекращается, что приводит к гибели живого организма.

Метаболизм включает два тесно взаимосвязанных противоположных процесса:

  • катаболизм или диссимиляция;
  • анаболизм или ассимиляция.

Катаболизм или энергетический обмен - процесс распада сложных веществ (сахаров, жиров) на более простые. В результате образуется энергия в виде молекулы АТФ (аденозинтрифосфорная кислота или аденозинтрифосфат), которая является универсальным источником энергии. Часть образованных молекул АТФ участвует в синтезе различных веществ, часть - рассеивается в виде тепла.

Рис. 1. Формула АТФ.

Примеры катаболизма:

ТОП-4 статьи которые читают вместе с этой

  • расщепление этанола;
  • гликолиз - превращение глюкозы в кислоту, а затем - в воду и углекислый газ;
  • внутриклеточное дыхание (окисление).

Анаболизм или пластический обмен включает сложные химические реакции, в результате которых образуются высокомолекулярные вещества, необходимые для постройки и обновления организма (белки, жиры, углеводы). Для проведения таких реакций нужна энергия, т.е. анаболизм происходит с участием АТФ.

Анаболизм можно наблюдать в виде:

  • роста волос и ногтей;
  • образование мышц;
  • заживление ран, срастание костей и т.д.

Фотосинтез является анаболизмом, но вместо АТФ используется энергия солнечных лучей.

Рис. 2. Процесс фотосинтеза в клетке.

В результате катаболизма (распада) образуются простые вещества, которые могут соединяться при анаболизме (постройке) и вновь разрушаться при катаболизме с высвобождением АТФ. Хорошим примером являются жиры, которые образуются при ассимиляции, откладываются в тканях и расщепляются для получения энергии. Соотношение образованной и потраченной энергии называется энергетическим балансом. Анаболизм и катаболизм должны происходить параллельно без преобладания одного из процессов.

Этапы

Прежде чем пища превратится в энергию, она должна пройти долгий путь по желудочно-кишечному тракту, попасть в кровь и достигнуть каждой клетки, где начнётся метаболизм. Весь процесс делится на три стадии, которые описаны в таблице.

Этапы

Где происходит

Результат

Подготовительный

Желудочно-кишечный тракт

Вещества, поступившие с пищей, расщепляются на молекулы и всасываются в кровь. Белки расщепляются до аминокислот, углеводы - до глюкозы, жиры - до жирных кислот и глицерина. Происходит незначительное выделение энергии

Основной

Органеллы (функциональные структуры) клеток

Химические реакции анаболизма и катаболизма. Происходит образование АТФ и синтез специфичных для определённых тканей белков, обмен жиров и углеводов

Заключительный

Образование и выведение конечных продуктов распада - воды и углекислого газа. Выведение происходит через почки, кишечник, лёгкие, потовые железы

Рис. 3. Схема обмена веществ.

На протяжении всего метаболизма задействованы катализаторы - ферменты, которые ускоряют синтез или распад. Ферменты действуют избирательно: каждый вид участвует в строго определённых реакциях. Например, амилаза помогает расщепить крахмал в ротовой полости.

Регуляцию обмена веществ осуществляет гипоталамус, где находятся центры теплообмена, ощущений голода, жажды, насыщения. Нейроны гипоталамуса реагируют на уровень глюкозы, изменение давления, температуры и т.д. В соответствии с полученной информацией гипоталамус корректирует метаболизм.

Что мы узнали?

Кратко узнали об основных стадиях и этапах метаболизма, взаимодействии и примерах катаболизма и анаболизма, о значении ферментов для метаболизма и центре контроля всех внутриклеточных процессов.

Тест по теме

Оценка доклада

Средняя оценка: 4.7 . Всего получено оценок: 140.